If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20m^2+15m=0
a = 20; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·20·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*20}=\frac{-30}{40} =-3/4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*20}=\frac{0}{40} =0 $
| 4u=89 | | 2x-(7/6)=3-3x | | x+(0.12)(x)=100 | | 2/3x+5=-4 | | 4/9+x=-5/6 | | n-9=2n+3 | | a+9.45=11 | | x+.133=20 | | 1/5(7+2)-4/15(3x-7/4=1/10(6x+7) | | 0.6(7x+2)-0.26(3x-1.75=0.3(6x+7) | | 2(11/8y)+2*y=190 | | -0.65x+0.45x=4.4 | | 12x+10x=14=80 | | 0.6(7+2)-0.26(3x-1.75=0.3(6x+7) | | b/12=-7 | | c=-4/5=-5/6 | | X²+24x+119=0 | | 2x^2–16x+24=0 | | 2x2–16x+24=0 | | y=10+15 | | 12=p+ | | f(1/10)=1/(1/10) | | 18x-1=15x-0.5 | | d/2-1.02=1.98 | | 12−4y=2(y+9)y= | | 2.25x^-210x=0 | | f(1/2)=1/(1/2) | | 42+(-4n+46)*n=224 | | c/3+-15=-18 | | 12.2=2y+5.2 | | 42+(-4n+46)*N/2=224 | | 0.83(-7m+4)-2.6=0.11(m-2) |